Moving Average Forecasting Introdução. Como você pode imaginar, estamos olhando para algumas das abordagens mais primitivas para a previsão. Mas espero que estas sejam pelo menos uma introdução que vale a pena para algumas das questões de computação relacionadas com a implementação de previsões em planilhas. Neste sentido, vamos continuar a partir do início e começar a trabalhar com previsões de média móvel. Previsões médias móveis. Todo mundo está familiarizado com as previsões de média móvel, independentemente de eles acreditam que são. Todos os estudantes universitários fazê-los o tempo todo. Pense nos seus resultados de teste em um curso onde você vai ter quatro testes durante o semestre. Vamos supor que você tem um 85 em seu primeiro teste. O que você poderia prever para sua pontuação do segundo teste O que você acha que seu professor iria prever para a sua próxima pontuação de teste O que você acha que seus amigos podem prever para a sua próxima pontuação de teste O que você acha que seus pais podem prever para a sua próxima pontuação de teste Todo o blabbing você pôde fazer a seus amigos e pais, eles e seu professor são muito prováveis esperar que você comece algo na área dos 85 que você começou apenas. Bem, agora vamos supor que, apesar de sua auto-promoção para seus amigos, você superestimar-se e figura que você pode estudar menos para o segundo teste e assim você começa um 73. Agora o que são todos os interessados e despreocupado vai Antecipar você vai chegar em seu terceiro teste Existem duas abordagens muito provável para eles desenvolver uma estimativa, independentemente de se eles vão compartilhar com você. Eles podem dizer a si mesmos: "Esse cara está sempre soprando fumaça sobre sua inteligência. Hes que vai obter outro 73 se hes afortunado. Talvez os pais tentem ser mais solidários e dizer: "Bem, até agora você conseguiu um 85 e um 73, então talvez você deva imaginar sobre como obter um (85 73) 2 79. Eu não sei, talvez se você fez menos festas E werent abanando a doninhas em todo o lugar e se você começou a fazer muito mais estudando você poderia obter uma pontuação mais alta. Ambos estas estimativas são, na verdade, a média móvel previsões. O primeiro é usar apenas sua pontuação mais recente para prever o seu desempenho futuro. Isso é chamado de média móvel usando um período de dados. O segundo é também uma previsão média móvel, mas usando dois períodos de dados. Vamos supor que todas essas pessoas rebentando em sua grande mente têm tipo de puto você fora e você decidir fazer bem no terceiro teste para suas próprias razões e colocar uma pontuação mais alta na frente de seus quotalliesquot. Você toma o teste e sua pontuação é realmente um 89 Todos, incluindo você mesmo, está impressionado. Então agora você tem o teste final do semestre chegando e, como de costume, você sente a necessidade de incitar todos a fazer suas previsões sobre como você vai fazer no último teste. Bem, espero que você veja o padrão. Agora, espero que você possa ver o padrão. Qual você acha que é o apito mais preciso enquanto trabalhamos. Agora vamos voltar para a nossa nova empresa de limpeza iniciada por sua meia irmã distante chamado Whistle While We Work. Você tem alguns dados de vendas anteriores representados pela seção a seguir de uma planilha. Primeiro, apresentamos os dados para uma previsão média móvel de três períodos. A entrada para a célula C6 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C7 a C11. Observe como a média se move sobre os dados históricos mais recentes, mas usa exatamente os três períodos mais recentes disponíveis para cada previsão. Você também deve notar que nós realmente não precisamos fazer as previsões para os períodos passados, a fim de desenvolver a nossa previsão mais recente. Isso é definitivamente diferente do modelo de suavização exponencial. Ive incluído o quotpast previsões, porque vamos usá-los na próxima página da web para medir a validade de previsão. Agora eu quero apresentar os resultados análogos para uma previsão média móvel de dois períodos. A entrada para a célula C5 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C6 a C11. Observe como agora apenas as duas mais recentes peças de dados históricos são usados para cada previsão. Mais uma vez eu incluí as previsões quotpast para fins ilustrativos e para uso posterior na validação de previsão. Algumas outras coisas que são de importância notar. Para uma previsão média móvel de m-período, apenas os m valores de dados mais recentes são usados para fazer a previsão. Nada mais é necessário. Para uma previsão média móvel do período m, ao fazer previsões quotpast, observe que a primeira predição ocorre no período m 1. Ambas as questões serão muito significativas quando desenvolvemos nosso código. Desenvolvendo a função de média móvel. Agora precisamos desenvolver o código para a previsão da média móvel que pode ser usado de forma mais flexível. O código segue. Observe que as entradas são para o número de períodos que você deseja usar na previsão ea matriz de valores históricos. Você pode armazená-lo em qualquer pasta de trabalho que você deseja. Função MovingAverage (Histórico, NumberOfPeriods) Como Único Declarar e inicializar variáveis Dim Item Como Variante Dim Counter Como Inteiro Dim Acumulação como Único Dim HistoricalSize As Inteiro Inicializando variáveis Counter 1 Acumulação 0 Determinando o tamanho da Historical array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Acumulando o número apropriado dos valores mais recentes anteriormente observados Acumulação Acumulação Histórico (HistoricalSize - NumberOfPeriods Counter) MovingAverage Acumulação NumberOfPeriods O código será explicado na classe. Você quer posicionar a função na planilha para que o resultado da computação apareça onde ele deve gostar da seguinte. Uma série de tempo é uma seqüência de observações de uma variável aleatória periódica. Exemplos disso são a demanda mensal por um produto, a matrícula anual de calouros em um departamento da universidade e os fluxos diários em um rio. As séries cronológicas são importantes para a pesquisa operacional, porque muitas vezes são os impulsionadores dos modelos de decisão. Um modelo de inventário requer estimativas de demandas futuras, um planejamento de curso e modelo de pessoal para um departamento universitário requer estimativas de entrada de estudantes futuros e um modelo para fornecer avisos para a população em uma bacia hidrográfica requer estimativas de fluxos de rios para o futuro imediato. A análise de séries temporais fornece ferramentas para selecionar um modelo que descreve a série de tempo e usar o modelo para prever eventos futuros. Modelar a série temporal é um problema estatístico porque os dados observados são usados em procedimentos computacionais para estimar os coeficientes de um suposto modelo. Os modelos assumem que as observações variam aleatoriamente sobre um valor médio subjacente que é uma função do tempo. Nessas páginas, restringimos a atenção ao uso de dados históricos de séries temporais para estimar um modelo dependente do tempo. Os métodos são apropriados para a previsão automática e de curto prazo de informações freqüentemente usadas onde as causas subjacentes da variação do tempo não estão mudando marcadamente no tempo. Na prática, as previsões derivadas por esses métodos são posteriormente modificadas por analistas humanos que incorporam informações não disponíveis a partir dos dados históricos. Nosso objetivo principal nesta seção é apresentar as equações para os quatro métodos de previsão utilizados no suplemento Forecasting: média móvel, suavização exponencial, regressão e suavização exponencial dupla. Estes são chamados métodos de suavização. Métodos não considerados incluem a previsão qualitativa, regressão múltipla, e métodos autorregressivos (ARIMA). Aqueles interessados em uma cobertura mais ampla devem visitar o site Previsões Princípios ou ler um dos vários excelentes livros sobre o tema. Usamos o livro Previsão. Por Makridakis, Wheelwright e McGee, John Wiley amp Sons, 1983. Para usar o pasta de trabalho Exemplos do Excel, você deve ter o suplemento de Previsão instalado. Escolha o comando Relink para estabelecer os links para o suplemento. Esta página descreve os modelos utilizados para previsão simples e a notação utilizada para a análise. Este método de previsão mais simples é a previsão média móvel. O método simplesmente médias das últimas m observações. É útil para séries de tempo com uma média lentamente em mudança. Este método considera todo o passado na sua previsão, mas pesa a experiência recente mais fortemente do que menos recente. Os cálculos são simples porque somente a estimativa do período anterior e os dados atuais determinam a nova estimativa. O método é útil para séries temporais com uma média em mudança lenta. O método da média móvel não responde bem a uma série temporal que aumenta ou diminui com o tempo. Aqui nós incluímos um termo de tendência linear no modelo. O método de regressão aproxima o modelo construindo uma equação linear que fornece o ajuste de mínimos quadrados às últimas observações de m. Previsão por Técnicas de suavização Este site é uma parte dos objetos de aprendizagem JavaScript E-labs para tomada de decisão. Outros JavaScript nesta série são classificados em diferentes áreas de aplicações na seção MENU nesta página. Uma série de tempo é uma seqüência de observações que são ordenadas no tempo. Inerente na coleta de dados levados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. As técnicas amplamente utilizadas são suavização. Estas técnicas, quando devidamente aplicadas, revelam mais claramente as tendências subjacentes. Insira a série de tempo em ordem de linha em seqüência, começando pelo canto superior esquerdo e o (s) parâmetro (s) e, em seguida, clique no botão Calcular para obter uma previsão de um período antecipado. As caixas em branco não são incluídas nos cálculos, mas os zeros são. Ao inserir seus dados para mover de célula para célula na matriz de dados use a tecla Tab não seta ou digite chaves. Características de séries temporais, que podem ser reveladas ao examinar seu gráfico. Com os valores previstos, eo comportamento residual, modelagem de previsão de condições. Médias móveis: As médias móveis classificam-se entre as técnicas mais populares para o pré-processamento de séries temporais. Eles são usados para filtrar o ruído branco aleatório dos dados, para tornar a série de tempo mais suave ou mesmo para enfatizar certos componentes informativos contidos na série de tempo. Suavização Exponencial: Este é um esquema muito popular para produzir uma Série de Tempo suavizada. Enquanto nas Médias Móveis as observações passadas são ponderadas igualmente, a Suavização Exponencial atribui pesos exponencialmente decrescentes à medida que a observação avança. Em outras palavras, as observações recentes recebem relativamente mais peso na previsão do que as observações mais antigas. O Double Exponential Smoothing é melhor para lidar com as tendências. Triple Exponential Smoothing é melhor no manuseio de tendências de parabola. Uma média móvel exponencialmente ponderada com uma constante de suavização a. Corresponde aproximadamente a uma média móvel simples de comprimento (isto é, período) n, onde a e n estão relacionados por: a 2 (n1) OR n (2 - a) a. Assim, por exemplo, uma média móvel exponencialmente ponderada com uma constante de suavização igual a 0,1 corresponderia aproximadamente a uma média móvel de 19 dias. E uma média móvel simples de 40 dias corresponderia aproximadamente a uma média móvel exponencialmente ponderada com uma constante de alisamento igual a 0,04878. Suavização Linear Exponencial de Holts: Suponha que a série de tempo não é sazonal, mas exibe tendência. Holts método estima tanto o nível atual ea tendência atual. Observe que a média móvel simples é caso especial da suavização exponencial, definindo o período da média móvel para a parte inteira de (2-Alpha) Alpha. Para a maioria dos dados de negócios, um parâmetro Alpha menor que 0,40 é freqüentemente efetivo. No entanto, pode-se realizar uma busca de grade do espaço de parâmetro, com 0,1 a 0,9, com incrementos de 0,1. Então o melhor alfa tem o menor erro médio absoluto (erro MA). Como comparar vários métodos de alisamento: Embora existam indicadores numéricos para avaliar a precisão da técnica de previsão, a abordagem mais abrangente é o uso de comparação visual de várias previsões para avaliar a sua precisão e escolher entre os vários métodos de previsão. Nesta abordagem, é necessário plotar (usando, por exemplo, Excel) no mesmo gráfico os valores originais de uma variável de série temporal e os valores previstos de vários métodos de previsão diferentes, facilitando assim uma comparação visual. Você pode gostar de usar as Previsões Passadas por Técnicas de Suavização JavaScript para obter os valores de previsão anteriores com base em técnicas de suavização que usam apenas um único parâmetro. Os métodos Holt e Winters usam dois e três parâmetros, respectivamente, portanto, não é uma tarefa fácil selecionar os valores ótimos, ou até perto de ótimos, por tentativa e erros para os parâmetros. A suavização exponencial única enfatiza a perspectiva de curto alcance que define o nível para a última observação e é baseada na condição de que não há tendência. A regressão linear, que se ajusta a uma linha de mínimos quadrados aos dados históricos (ou dados históricos transformados), representa a faixa de longo alcance, que está condicionada à tendência básica. Holts linear suavização exponencial captura informações sobre tendência recente. Os parâmetros no modelo de Holts são níveis-parâmetro que devem ser diminuídos quando a quantidade de variação de dados é grande, e as tendências-parâmetro devem ser aumentadas se a tendência de direção recente é suportada pelo causal alguns fatores. Previsão de Curto Prazo: Observe que cada JavaScript nesta página fornece uma previsão de um passo adiante. Para obter uma previsão de duas etapas. Basta adicionar o valor previsto ao final dos dados de séries temporais e, em seguida, clicar no mesmo botão Calcular. Você pode repetir este processo por algumas vezes para obter as previsões de curto prazo necessárias. Na prática, a média móvel fornecerá uma boa estimativa da média das séries temporais se a média for constante ou mudar lentamente. No caso de uma média constante, o maior valor de m dará as melhores estimativas da média subjacente. Um período de observação mais longo medirá os efeitos da variabilidade. A finalidade de fornecer um m menor é permitir que a previsão responda a uma mudança no processo subjacente. Para ilustrar, propomos um conjunto de dados que incorpora mudanças na média subjacente das séries temporais. A figura mostra a série de tempo usada para ilustração juntamente com a demanda média a partir da qual a série foi gerada. A média começa como uma constante em 10. Começando no tempo 21, ele aumenta em uma unidade em cada período até atingir o valor de 20 no tempo 30. Então ele se torna constante novamente. Os dados são simulados adicionando à média um ruído aleatório de uma distribuição Normal com média zero e desvio padrão 3. Os resultados da simulação são arredondados para o inteiro mais próximo. A tabela mostra as observações simuladas usadas para o exemplo. Quando usamos a tabela, devemos lembrar que a qualquer momento, apenas os dados passados são conhecidos. As estimativas do parâmetro do modelo,, para três valores diferentes de m são mostradas juntamente com a média das séries temporais na figura abaixo. A figura mostra a estimativa média móvel da média em cada momento e não a previsão. As previsões mudariam as curvas de média móvel para a direita por períodos. Uma conclusão é imediatamente aparente a partir da figura. Para as três estimativas, a média móvel está aquém da tendência linear, com o atraso aumentando com m. O atraso é a distância entre o modelo ea estimativa na dimensão temporal. Devido ao atraso, a média móvel subestima as observações à medida que a média está aumentando. O viés do estimador é a diferença em um tempo específico no valor médio do modelo eo valor médio predito pela média móvel. O viés quando a média está aumentando é negativo. Para uma média decrescente, o viés é positivo. O atraso no tempo eo viés introduzido na estimativa são funções de m. Quanto maior o valor de m. Maior será a magnitude do atraso e do viés. Para uma série continuamente crescente com tendência a. Os valores de lag e viés do estimador da média são dados nas equações abaixo. As curvas de exemplo não correspondem a essas equações porque o modelo de exemplo não está aumentando continuamente, em vez disso, ele começa como uma constante, muda para uma tendência e, em seguida, torna-se constante novamente. Também as curvas de exemplo são afetadas pelo ruído. A previsão média móvel de períodos no futuro é representada deslocando as curvas para a direita. O atraso e o viés aumentam proporcionalmente. As equações abaixo indicam o atraso e o viés de um período de previsão para o futuro quando comparado aos parâmetros do modelo. Novamente, estas fórmulas são para uma série de tempo com uma tendência linear constante. Não devemos nos surpreender com esse resultado. O estimador da média móvel é baseado no pressuposto de uma média constante, eo exemplo tem uma tendência linear na média durante uma porção do período de estudo. Como as séries de tempo real raramente obedecerão exatamente aos pressupostos de qualquer modelo, devemos estar preparados para tais resultados. Podemos também concluir a partir da figura que a variabilidade do ruído tem o maior efeito para m menor. A estimativa é muito mais volátil para a média móvel de 5 do que a média móvel de 20. Temos os desejos conflitantes de aumentar m para reduzir o efeito da variabilidade devido ao ruído e diminuir m para fazer a previsão mais sensível às mudanças Em média. O erro é a diferença entre os dados reais e o valor previsto. Se a série temporal é verdadeiramente um valor constante, o valor esperado do erro é zero ea variância do erro é composta por um termo que é uma função de e um segundo termo que é a variância do ruído,. O primeiro termo é a variância da média estimada com uma amostra de m observações, assumindo que os dados provêm de uma população com média constante. Este termo é minimizado tornando m o maior possível. Um grande m faz com que a previsão não responda a uma mudança nas séries temporais subjacentes. Para tornar a previsão responsiva às mudanças, queremos que m seja o menor possível (1), mas isso aumenta a variância do erro. A previsão prática requer um valor intermediário. Previsão com o Excel O suplemento de Previsão implementa as fórmulas de média móvel. O exemplo abaixo mostra a análise fornecida pelo add-in para os dados da amostra na coluna B. As primeiras 10 observações são indexadas -9 a 0. Em comparação com a tabela acima, os índices de período são deslocados por -10. As primeiras dez observações fornecem os valores de inicialização para a estimativa e são usadas para calcular a média móvel para o período 0. A coluna MA (10) (C) mostra as médias móveis calculadas. O parâmetro de média móvel m está na célula C3. A coluna Fore (1) (D) mostra uma previsão para um período no futuro. O intervalo de previsão está na célula D3. Quando o intervalo de previsão é alterado para um número maior, os números na coluna Fore são deslocados para baixo. A coluna Err (1) (E) mostra a diferença entre a observação e a previsão. Por exemplo, a observação no tempo 1 é 6. O valor previsto a partir da média móvel no tempo 0 é 11.1. O erro é então -5.1. O desvio padrão eo desvio médio médio (MAD) são calculados nas células E6 e E7, respectivamente.
No comments:
Post a Comment